

 Navigation

 	
 index

 	
 next |

 	DSAT 0.6 documentation

DSAT Distributed satellite tools

DSAT is a framework for handling and connecting distributed writers and producers.

It also provides an integration with circus a way to monitor and handle your processes.

Changelog

	Version 0.5

	Alpha

	Version 0.6

	adding parse_mesg
migrating to tornado event loops in ssat requires change in DSAT

	Changelog and roadmap
	Changelog

	Convention:

	Roadmap

	TODO limitations

 Copyright 2015, julien@tayon.net.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	DSAT 0.6 documentation

Changelog and roadmap

Changelog

	0.5.1

	
	GPG signing package, setting up the build chain (read the docs, pypi ...)

	making sure README.rst is both used in docs and pypi description

	0.5.0

	Initial release.

Convention:

version x.y.z

while in beta convention is :

	x = 0

	y = API change

	z = bugfix and/or improvement

and then

	x = API change

	y = improvement

	z = bugfix

Roadmap

	0.6.1

	
	introducing a garbage collector that can serialize buffer on disk

	going tornado

	0.6

	Make a full functionnal testing framework so people can build their own topology and measure impacts
of choices.
When it works for me (tm) switch to beta.

TODO limitations

	OOP to reduce the repeating of args in function calls

	in the tests with carbon clean hierarchy of metrics

	implements a simple router

	binary star on more than one server orchester

	find a way to deploy and package satellites set

	
	find a consistent naming (power of analogy will go full retarded with

	astronomy)

	ease the multi hosts satellites connection

	invent a way to modify the code in the orchester for routing by using

PUB/SUB for rerouting informations simplified coroutines (going the bright
side of 10th greenspun law and assumming to borrow the concepts of CLISP)

	
	make it easy to change the serialization format (utlimately find a way

	to use pack and unpack to go full speed and ease the transmission
of data coming from C)

	
	promote the use of badass archery library and its confusing naming because

	I hate humanity (some people wants to watch the world burn)

	reduce code, improve reliability, reduce functionnalities to have a better code

	
	Maybe draw attention to developers that they are totally acculturated and

	re explain some basics of networks/system so that they are aware
that their ignorance may cause security issues. Highlight the fact
that powerfull tools are a way to shoot yourself a nuclear missile in the
knee

	
	ERROR HANDLING even I is not totally top notch on the topic, find a subset

	of best practices that prevents a DOS by repeated failures of do
something at the orchester/tracker level to actively modify routing/
alert when something goes wrong

	
	Use pytables to store efficiently messages in a hierarchical way for messages

	that are critical and need to be replayed

	
	write the limitations : THIS CANNOT BE ACID BY DEFINITION, like any

	distributed systems. (can be improved later by using PAIR of REP/REQ for
statefull connections that should make it reliable enough if you had
a on_happy end hook)

	write a tracker that takes full use of the FSM and implement the time_out stuff

	
	put a notice about the halting problem and how we cannot differenciate a code

	in an infinite loop and a processing that takes a lot of time

	put a notice on how to design asynch system: bottom half architecture: satellites are bottom halfs.

	
	put a link to the fact that a complex system is by nature non deterministic

	(yes it is chaotic, but compared to systemd my architecture embrace
complexity and the positive property of complex systems such as the
resilience to perturbations)

	
	a big chapter on clock and time and distributed system, and how

	you don’t really need to read the indigests pedantic INRIA papers on vector clock
to make a distributed systems works correctly without clock
(hint : time is the accident of the accidents)

 Copyright 2015, julien@tayon.net.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	DSAT 0.6 documentation

Index

 Copyright 2015, julien@tayon.net.
 Created using Sphinx 1.2.2.

 _static/down-pressed.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		DSAT 0.6 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, julien@tayon.net.
 Created using Sphinx 1.2.2.

_static/comment.png

_static/comment-bright.png

_static/down.png

_static/plus.png

_static/up.png

_static/up-pressed.png

_static/comment-close.png

_static/file.png

_static/minus.png

